Total No. of Questions-8]

[Total No. of Printed Pages-2

B.A./B.Sc. V Semester Examination

CBS - Vs/1(R&P)

Mathematics Course No.: UMTTE503

Time Allowed: 3 Hours

Maximum Marks: 80

Note: Attempt any four questions from the given questions. Each question carries equal marks.

Q 1. *i)* Define vector subspace with two examples. Prove that a non-empty subset W of a vector space V over a field F is a vector subspace if and only if $\alpha x + \beta y \in W$ for all $x, y \in W$ and $\alpha, \beta \in F$.

ii) Define vector space. Show that \mathbb{C} , the complex plane is a vector space over \mathbb{Q} .

Q 2. *i)* Prove that intersection of any number of subspaces of a vector space V over a field F is a subspace of V.

ii) Let W_1 and W_2 be two subspaces of a vector space V over a field F. Prove that $W_1 + W_2 = L(W_1 \cup W_2).$

Q 3. Define finitely generated vector space with an example. Prove that there exists a basis for each finitely generated vector space.

Q 4. *i*) Discuss linear dependence or independence of the following sets:

(a) $\{xsinx, cosx\}$

 $(b) \{(1, 1, 1, 1), (1, 1, 1, 0), (0, 1, 0, 1), (0, 1, 0, 0)\}$

ii) Let V be a vector space over a field F. Show that the set S of non-zero vectors $x_1, x_2, x_3, x_4 \in V$ is L.D. if and only if some element of S is a linear combination of the others.

Q 5. i) Let V be a finite dimensional vector space over a field F. If W is a subspace of V, prove that $\dim.W \leq \dim.V$.

ii) Show that \mathbb{R} is infinite dimensional vector space over \mathbb{Q} .

Q 6. *i*) Let V and W be two vector spaces over the same field F. Show that $T: V \to W$ is a linear transformation if and only if $T(\lambda x + y) = \lambda T(x) + T(y)$ for all $x, y \in V$ and $\lambda \in F$.

ii) Let W be subspace of \mathbb{R}^3 generated by $\{(1, 0, 0), (0, 0, 1)\}$. Find the quotient space \mathbb{R}^3/W and its basis.

Q 7. State and prove Rank-Nullity theorem.

Q 8. *i*) Find the matrix representation of $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined as

T(x, y) = (3x - 4y, x + 5y)

with respect to the basis $B = \{(1, 0), (0, 1)\}.$

ii) If A and B are symmetric matrices of the same order, then show that AB is symmetric if and only if AB = BA.